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Abstract
Traditional descriptions of the cortical cholinergic input system focused on the diffuse organization
of cholinergic projections and the hypothesis that slowly changing levels of extracellular
acetylcholine (ACh) mediate different arousal states. The ability of ACh to reach the extrasynaptic
space (volume neurotransmission), as opposed to remaining confined to the synaptic cleft (wired
neurotransmission), has been considered an integral component of this conceptualization. Recent
studies demonstrated that phasic release of ACh, at the scale of seconds, mediates precisely defined
cognitive operations. This characteristic of cholinergic neurotransmission is proposed to be of
primary importance for understanding cholinergic function and developing treatments for cognitive
disorders that result from abnormal cholinergic neurotransmission.

The entire cortical mantle is innervated by cholinergic neurons that originate in the nucleus
basalis of Meynert, the substantia innominata and the horizontal limb of the diagonal band —
all structures of the basal forebrain (BF) (FIG. 1). Traditionally, the cortical cholinergic input
system has been categorized as the rostral component of the brain's ascending arousal systems,
complementing the modulatory roles of, and interacting with, noradrenergic, serotonergic and
other projection systems that broadly influence the readiness of the forebrain for input
processing, wakefulness and somnolence1. However, more recent evidence has supported the
more specific hypothesis that cortical cholinergic inputs mediate essential aspects of attentional
information processing2–9. As a result, efforts to develop treatments for a wide range of
cognitive disorders have focused on cholinomimetic approaches, particularly
acetylcholinesterase (ACHE) inhibitors and agonists at muscarinic (m) and nicotinic (n)
acetylcholine (ACh) receptors (AChRs)10–12.

The anatomical organization of the cortical cholinergic input system seems to be largely
consistent with the notion of a diffuse pathway (this article does not address the hippocampal
cholinergic projection system or cholinergic projections to the amygdala). Tracing studies
revealed a roughly ventrolateral, dorsomedial and rostrocaudal topographical organization of
cholinergic BF projections but did not suggest a more precise topography that would indicate,
for example, that adjacent neurons in the BF innervate adjacent regions in the cortex13–16 (FIG.
1 b,c). Nearly all cortical layers and regions are innervated by BF cholinergic neurons17,
although the distribution of choline acetyltransferase (CHAT)- or ACHE-positive fibres in the
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cortex indicates differences in the density of the cholinergic innervation of specific layers18–
21 (FIG. 2). This seemingly diffuse organization of the cortical cholinergic input system has
supported descriptions that it exerts general, uniform effects across the cortical
hemispheres20.

In contrast to other diffusely organized ascending systems, such as the ascending reticular
systems of the brainstem, the axons of corticopetal cholinergic neurons (subcortical afferents
that project to both cerebral hemispheres) do not seem to be extensively collateralized:
individual neurons innervate a relatively small cortical field22–24. Thus, separate cortical
regions, such as frontal and parietal regions, are not innervated by the same cholinergic neurons,
suggesting that these regions may be differentially modulated by the cholinergic input system.

It has recently been proposed14,15,25 that the corticopetal cholinergic system is less diffusely
organized than was traditionally assumed (FIG. 1 b,c). In support of this hypothesis, it has been
demonstrated that there are clusters of cholinergic cells in the BF15,25,26 and that the BF
receives modality-specific projections27. The morphological heterogeneity of BF cholinergic
neurons (see REFS 28,29) and of their efferent and afferent projection systems, including the
degree to which they exhibit a topographical organization, remains insufficiently
understood13. For example, the finding that manipulations of the excitability of the nucleus
accumbens affect prefrontal ACh release but not the release of ACh in parietal regions30,31

does not correspond with traditional descriptions of the organization of this system: it is more
consistent with views suggesting a refined anatomical or functional topographical organization
of the BF corticopetal projection system.

Cholinergic transmission modes
Central to the debate about the organization and function of the cortical cholinergic input
system is the question of whether cholinergic neurotransmission is restricted to classical
synapses (wired transmission) or is capable of escaping the synapse to stimulate distant,
extrasynaptic mAChRs and nAChRs (diffuse, paracrine, non-junctional or volume
transmission)32,33 (FIG. 3; TABLE 1). Despite the inconclusive evidence concerning the
transmission mode that characterizes cortical ACh release, briefly reviewed below,
contemporary models formalizing the functions of the BF cholinergic system and efforts to
develop pro-cholinergic treatments have been based largely on the assumption that ACh is
volume transmitted7,10. However, new evidence suggests that phasic transmission might have
a central role in the cholinergic system.

Wired versus volume transmission
Some studies concluded that the great majority of cholinergic terminals in the cortex of rats
and humans form synaptic contacts34,35, supporting the notion that cholinergic transmission
is mainly wired. By contrast, other studies that quantitatively analysed the ratio of cholinergic
pre- to postsynaptic structures36–40 demonstrated that mAChRs are present at non-cholinergic
synapses41, providing strong support for volume transmission of ACh. Furthermore, measures
of basal ACh release obtained using microdialysis have been interpreted to indicate an
extracellular ambient level of ACh37, estimated to be in the high nanomolar to low micromolar
range42.

The reasons for the discrepancy between these studies remain unclear, and other studies have
also produced apparently contradictory results. For example, the presence of extrasynaptic Ml
and M2 mAChRs in the cortex with high affinity for ACh suggests volume transmission41.
However, other studies that analysed the relationships between cholinergic innervation and the
distribution of mAChRs suggested a close correspondence, indicative of wired
transmission18,43. With respect to nAChRs in the cortex, the predominant presence of nAChRs
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at presynaptic terminals of glutamatergic and other cortical afferents44 has been suggested to
be indicative of an extrasynaptic role and therefore volume transmission45–47. Furthermore,
extrasynaptic α7 nAChRs have been demonstrated to be present in subcortical regions46.
However, it is not clear whether the presence of heteroreceptors by default indicates the
presence of non-junctional complexes, and whether the extrasynaptic location of these
receptors, specifically α7 nAChRs, indicates volume transmission or unrelated signalling
events48–50.

As microdialysis probes are too large to enter the synaptic cleft, the recovery of ACh using
microdialysis has been attributed to the presence of ACh in the extracellular space. However,
the exquisite sensitivity of ACh levels collected by microdialysis to depolarization blockade
by tetrodotoxin (for example, see REF. 51) suggests that ACh collected by this method both is
tightly controlled by presynaptic activity and originates from synapses located extremely close
to the microdialysis membrane. Furthermore, tetrodotoxin administration to ACHE-deficient
mutant mice, with 100 times the normal level of basal ACh (4.6 nM instead of 556 nM),
decreased ACh levels by 98%52. This finding illustrates that basal ACh levels measured by
microdialysis closely reflect synaptic activity.

The interpretation that ACh recovered by microdialysis is indicative of volume transmission
assumes that many of these presynaptic terminals form non-junctional release sites and/or are
associated with concentrations of ACHE that are insufficient to completely hydrolyse newly
released ACh. However, insertion of microdialysis probes results in oedema, haemorrhage,
blood–brain barrier disruption, decreases in various enzymes associated with neurotransmitter
synthesis and metabolism, intracellular changes, gliosis, neurodegeneration and lasting
suppression of glucose metabolism53–58. Therefore, the ACh is in essence recovered from
scarred tissue57, and so the conclusion that microdialysis results demonstrate volume
transmission must be treated with caution (see also REFS 59,60).

Acetylcholinesterase
The exceptional catalytic power of ACHE (one molecule of ACHE can hydrolyse 5,000
molecules of ACh per second61–63) and the presence of ACHE clusters at the synapse64 have
traditionally been cited in support of wired transmission of ACh. It has been suggested that as
ACh dissociates from receptors it is so effectively hydrolysed by free ACHE units that it is
virtually impossible that a single molecule of ACh may escape and activate another
receptor65. The view that an enzyme that is characterized by such high catalytic power functions
primarily to maintain a relatively stable extracellular ACh concentration contrasts boldly with
the more traditional view that ACHE serves to rapidly and completely hydrolyse newly released
ACh, thereby preventing spillover into the extrasynaptic space.

For volume transmission to occur, or for ACHE to have only a minor role in the immediate
elimination of newly released ACh37, the ACHE must be assumed to be limited in
concentration, compartmentalized and/or regulated, and to thereby limit ACh metabolism.
Much of our understanding of ACHE localization and enzymatic activity has been derived
from work at the muscular endplate, where clusters of ACHE can be found. It has been
suggested that the characteristics of ACHE localization at synapses in the brain might be
sufficiently different to allow volume transmission37. It is not yet known whether this is the
case, as evidence concerning the exact localization of synaptic, membrane-bound ACHE in
the forebrain remains scarce. Likewise, the regulation and function of the soluble forms of
synaptic ACHE are also poorly understood. Secreted, freely diffusing ACHE, although it
constitutes a minor proportion of the overall ACHE in the brain, could hydrolyse ACh even if
membrane-bound ACHE became saturated following a massive release event66.
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Using enzyme-selective microelectrodes and fixed-potential amperometry, it is possible to
measure choline spikes that result from the hydrolysis of newly released ACh67-71. Likewise,
by immobilizing ACHE on the surface of the recording electrode, in addition to choline oxidase
(CHOX), ACh can be directly detected because it is hydrolysed on the recording surface. This
adds to the choline signal detected by CHOX and yields larger currents than those obtained
with recordings that detect choline only. As indicated by the results of calibration studies,
electrodes coated with both ACHE and CHOX were able to detect low nanomolar
concentrations of ACh, and co-immobilization of ACHE and CHOX did not affect the
sensitivity of such recording sites to choline alone (for details see REF. 72). Massive
depolarization events, triggered in vivo by application of KCl72, did not result in the detection
of larger current amplitudes by these doubly coated recording sites. ACh amounts at the
recording sites were estimated at > 150 fmol. Although it cannot be excluded that lower levels
of extracellular ACh exist and that electrodes equipped with more potent enzymes73 would
reveal this, the above studies should have detected a KCl-evoked extra-synaptic concentric
wave of a millimolar concentration of ACh37,40 in support of volume transmission if this were
the case.

In summary, the evidence concerning the presence and the degree of volume transmission of
ACh remains inconclusive. The ongoing debate is further complicated by the insufficiently
and variably defined criteria and characteristics for both modes — wired and volume — of
transmission (TABLE 1). It is possible that extracellular ACh diffuses only over short
distances, thereby maintaining or establishing a fast form of non-synaptic transmission45. As
we explain next, the exact mode of cholinergic neurotransmission may be of minor importance
compared with the implications of new evidence that illustrates the phasic characteristics of
functional ACh release.

Phasic cholinergic signalling
Here we discuss the potential functional implications of evidence which indicates that phasic
cholinergic signals lasting seconds underlie the functions of the cortical cholinergic input
system. This evidence per se does not reject the possibility that extrasynaptic cholinergic
transmission takes place, particularly over short distances as described above45. However, it
does question the functional significance of persistent ambient levels of extracellular ACh37,
74.

The temporal resolution of studies that use microdialysis to measure ACh release is on the
scale of minutes (BOX 1). Consequently, conclusions based on microdialysis data were
consistent with the conventional characteristics of ACh acting as a neuromodulator, including
slowly changing release levels and volume transmission. With the advent of enzyme-selective
microelectrodes, the measurement of ACh concentrations with a sub-second resolution has
become possible68,69, and real-time measurements of ACh release in vivo have necessitated
revisions of hypotheses concerning the regulation and function of the cortical cholinergic input
system.

Recording prefrontal ACh release in animals performing a cued appetitive response task, we
found that transient increases in ACh at the scale of seconds mediate cue-evoked attention to
the reward ports (termed cue detection9; see BOX 1 for a paradigmatic illustration of such
cholinergic transients). Furthermore, we measured ACh release using microdialysis in task-
performing animals and demonstrated that the results, collected over an 8 min period, could
be reproduced using the second-scale cholinergic transients by summing up and averaging
these transients over 8 min periods (see supplemental data in REF. 9). Thus, the differential
functions of the cortical cholinergic input system can be described by using different temporal
units of behavioural and cognitive processes8. This evidence did not substantiate the presence
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of a separate, independent mode of cholinergic neurotransmission characterized by slower,
minute-scale changes in cholinergic activity.

Recent research has begun defining the local prefrontal circuitry that is responsible for
generating phasic cholinergic signalling44. The evidence suggests that such cholinergic signals
result from local intracortical glutamate–choline interactions, with glutamate signals that
originate from thalamic afferents and stimulation of ionotropic glutamate receptors,
presumably situated on cholinergic terminals, representing key steps in the generation of
cholinergic transients.

Implications for neuropsychopharmacology
If fluctuations in basal extracellular ACh levels were functionally significant, ACHE inhibitors,
by blocking the hydrolysis of ACh and thereby robustly elevating basal extracellular ACh
levels, would be expected to markedly enhance cue detection processes and associated
attentional performance. Likewise, drugs that act as mAChR agonists and mimick the tonic
stimulation of these receptors that results from increased extracellular ACh levels should
enhance the cognitive functions of healthy subjects and patients suffering from cognitive
impairments. However, the efficacy of such cholinomimetic treatments has remained strikingly
below expectation75-77. Although numerous mechanisms might contribute to the limited pro-
cognitive effects of these compounds, such treatments are unlikely to augment, amplify or
mimic the phasic characteristics of cholinergic activity that mediate cognitive operations, and
thus they would not be expected to facilitate the cognitive functions that depend on cholinergic
activity.

In contrast to pharmacological approaches that focus on elevating extracellular levels of ACh
and direct stimulation of mAChRs, nAChR agonists, specifically α4β2*-selective nAChR
agonists, generate phasic cholinergic signals and are proposed to robustly enhance cognitive
functions44. Even the non-selective nAChR agonist nicotine, when given systemically to
animals performing a cued appetitive response task, enhances the proportion of trials that
involve cue detection and, mechanistically, augments the amplitude of the cholinergic transient
that mediates cue detection78. Accumulating clinical evidence indicates that nAChR agonists
enhance the cognitive abilities of a wide range of patients79-81. Although the overall evidence
presently remains limited, nAChR agonists seem to act primarily by enhancing the temporally
precisely orchestrated phasic cholinergic activity that mediates fundamental cognitive
mechanisms.

Thus, the available neuropsychopharmacological evidence points to phasic ACh release being
of crucial significance. The focus on developing cognition enhancers that amplify cholinergic
transients represents a clear departure from the more traditional view that modifying persistent
extracellular levels of ACh is a useful neuropsychopharmacological target.

Different modes — time to move on?
The presence or absence of volume transmission and the degree, in terms of distance and time,
of extrasynaptic effects of ACh remain unresolved issues. Indeed, it is difficult to conceive of
an experiment that would conclusively reject the possibility that a proportion of ACh spills
into the extracellular space. A more constrained version of volume transmission, involving fast
extrasynaptic actions of ACh (as proposed in REF. 50), might be more plausible than the extreme
hypothesis that fluctuations in extrasynaptic ACh levels are key to understanding cholinergic
function. However, this debate seems to be less crucial for future research on the functions of
cholinergic systems and for the development of pro-cognitive therapies than the implications
of the phasic signalling characteristics of ACh that were found in recent experiments8,9,44.
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Box 1

ACh in attentional performance

During the performance of a sustained attention task, acetylcholine (ACh) release typically
increases by 120–140% over the pre-task baseline. Part a of the figure shows a paradigmatic
illustration of prefrontal ACh release, measured using in vivo microdialysis of animals
performing an attentional task (the inset illustrates the placement of a microdialysis probe
on a coronal section of the rat medial prefrontal cortex). Such increases are not observed in
animals performing various control tasks. Because of the low temporal resolution of this
technique (10 min collections were required to produce a single detectable data point), data
from such studies are consistent with the conventional description of slowly changing levels
of ACh, mediating ‘arousal’ states. If ACh release indeed had these characteristics, the
question of whether, and to what degree, ACh is volume transmitted would be crucially
important to hypotheses concerning the functions of this neuronal system. However, as
illustrated in part b of the figure, our recent experiments using choline-sensitive
microelectrodes (the placement of an electrode with four platinum- and enzyme-coated
recording sites fabricated into its tip is illustrated in the inset) indicated that cholinergic
activity occurs at the scale of seconds, and that transient increases in ACh release mediate
the detection component of attention tasks. (Detection is defined as a cognitive process that
involves the incorporation of a cue into the ongoing cognitive and behavioural process and
therefore allows the cue to control behaviour; for details see REF. 9.) The graph provides a
paradigmatic illustration of the cholinergic transients that are evoked by a cue in trials that
result in the detection of such a cue. Cues that fail to evoke such transients are missed (for
actual data see REF. 9). We previously demonstrated that summing and averaging second-
scale increases in cholinergic activity in task-performing animals statistically reproduced
minute-scale ACh release data obtained using microdialysis (see the evidence described in
the appendix of REF. 9). These highly orchestrated cholinergic transients are arguably a more
important characteristic of cholinergic neurotransmission than the potential existence of
volume transmission, rendering the question about the presence and degree of volume
neurotransmission of secondary importance. Data in part a are modelled from data in REF.
93.
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As the functional significance of neurotransmission mode has also been debated with respect
to several other neuromodulator systems82-84, such as serotonergic and noradrenergic systems,
our conclusions might generalize to these systems. For example, ultrastructural evidence
indicated a high proportion of non-junctional neurotransmitter receptor complexes at
serotonergic and noradrenergic terminals. Furthermore, the ability to measure release of these
modulators using microdialysis has been interpreted as evidence for the existence of volume
transmission85,86. However, it is intriguing to speculate that, similar to ACh, these
neuromodulators code discrete information based on phasic release patterns. It may be further
speculated that it is a common feature of all ascending neuromodulator systems that although
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their anatomical organization reflects a diffuse and not obviously structured projection system,
the regulation of their terminal activity by local (cortical) circuitry, involving heteroreceptors
situated on their terminals, allowed the evolving forebrain to use the neuromodulator input to
generate precisely orchestrated signals and mediate defined cognitive operations.

Concerning the mesolimbic dopamine system, there is strong evidence for the presence of both
phasic and tonic neuronal activity, interactions between the two, and associated patterns of
dopamine release (for example, see REFS 87,88). Moreover, differential functions of dopamine
have been attributed to it acting at different timescales, ranging from quasi hormonal functions
of tonic levels of dopamine release to reward and outcome processing by phasic release89.
However, tonic release can also result from asynchronous firing of groups of dopaminergic
neurons90,91. Furthermore, as the timescales that are applied to describe the release of a
neurotransmitter are necessarily confounded by the temporal and spatial resolution as well as
the sensitivity of detection techniques, the increasing use of electrochemical techniques to
measure dopamine release will provide interesting new insights into the nature of functional
dopamine release at the scale of seconds (for example, see REF. 92).

If transient release patterns are sufficient to explain the target area-specific cognitive operations
that are mediated by ascending ‘neuromodulator’ systems, we could finally unchain ourselves
from the misleading constraints of outdated descriptions of ‘arousal’ systems and their
associated dichotomies, including phasic versus tonic and volume versus wired
neurotransmission, and the classification of signalling molecules as neurotransmitters versus
neuromodulators. Instead we could focus on determining how evolving forebrain circuits
usurped these massive input systems. By modulating neurotransmission of these inputs based
on heteroreceptors situated on their terminals and local microcircuitry contacting these
terminals, forebrain target areas can use seemingly diffusely organized input systems to
generate function-specific, transient changes in neurotransmitter release that initiate or foster
the mediation of specific cognitive operations.
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Figure 1. The cortical cholinergic input system
a | Basal forebrain (BF) efferent cholinergic projections to the entire cortical mantle, and the
main telencephalic afferent projection systems of the BF (view at a sagittal section).
Cholinergic neurons originate from the nucleus basalis of Meynert, the substantia innominata
and the vertical and horizontal nuclei of the diagonal band of Broca (collectively termed the
BF) and innervate all cortical areas and layers. The prefrontal cortex (PFC) is the only cortical
region, in rodents and primates, that is known to project back to the BF both directly and
indirectly (through the nucleus accumbens (NAc)). The BF, PFC and NAc are also all
innervated by dopaminergic neurons from the ventral tegmental area (VTA), and these
dopaminergic neurons in turn are contacted by PFC projections. This organization suggests a
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profound control of the BF by the PFC. Not shown are brainstem projections to the BF. b | A
composite map showing the three-dimensional distribution of cholinergic cells projecting to
four arbitrarily defined mediolateral sectors of the neocortex. Cells projecting to different
regions are colour-coded (medial: red; intermediary sector: blue and yellow; lateral parts of
the neocortex: green). Note the relatively ordered rostromedial to caudolateral distribution of
cells projecting to mediolaterally located cortical areas.c | A surface density-based render of
the major organizational features in the BF (unit space: 400 × 400 × 50 μm; density threshold
> 2 cells per voxel; the numbers along the z axis are the layers (sections) and the x and y values
correspond to the voxel indices; for details see REF. 14). The colours of the units represent the
brain regions that the cholinergic cells in those areas project to (blue: posteromedial cortex;
yellow: medial prefrontal cortex; red: barrel cortex; green: posterior insular-perirhinal cortex;
light blue: agranular insular-lateral orbital cortex; magenta: lateral frontal (motor) cortex).
ACh, acetylcholine; GABA, γ-aminobutyric acid. Parts b and c are reproduced, with
permission, from REF. 14 © (2002) Springer.
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Figure 2. Cholinergic fibre distribution in the cortex
Coronal sections of the medial prefrontal cortex of the rat, visualized using choline acetyl-
transferase (CHAT) immunohistochemistry (a) or a histochemical method for revealing
acetylcholinesterase (ACHE)-positive fibres (b), are shown to illustrate the distribution of
cholinergic fibres in the cortex. The low resolution sections in parts a and b show the anterior
cingulate cortex (AC), the prelimbic cortex (Prel) and the infralimbic cortex (Infral); the
expansions show photomicrographs of the stippled areas, with the cortical layers indicated for
part b (note that in the rat the Prel is agranular (there is no layer IV)). CHAT immunoreactivity
reveals fine varicose fibres and darkly stained bipolar interneurons with axons and dendrites
that are organized perpendicularly to the pial surface. The phenotype of these neurons remains
elusive94: they do not express p75 receptors and thus are unaffected by local infusions of the
cholinotoxin 192 immunoglobulin G–saporin. Similarly, visualization of ACHE-positive
fibres reveals dense cholinergic input in all layers. Except for some minor layer-specific
organizational differences, the two methods reveal essentially similar patterns of cholinergic
input (see also REF. 18). The density of cholinergic inputs is similar throughout the cortex,
except that there are higher densities of cholinergic input to entorhinal and olfactory
regions17. Part b is modified, with permission, from REF. 72 © (2008) Elsevier.
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Figure 3. Major steps in the synthesis, release and metabolism of ACh, and the main characteristics
of wired and volume transmission
Except for localized increases in choline resulting from acetylcholine (ACh) hydrolysis by
acetylcholinesterase (ACHE), extracellular concentrations of choline are stable at ∼4.85
μM95. To synthesize ACh, choline is transported into the terminal through choline transporter
(CHT)95. In the terminal, choline acetyltransferase (CHAT) catalyses the synthesis of ACh
from choline and acetyl CoA (AcCoA). The capacity of CHT is the most significant
determinant of the rate of ACh synthesis. ACh is packed into vesicles by vesicular acetylcholine
transporter (VACHT) and released on depolarization of the terminal. Following release, ACh
can bind to nicotinic (n) and muscarinic (m) ACh receptors (AChRs) and is rapidly hydrolysed
by ACHE to yield choline and acetate. In the wired model of cholinergic neurotransmission
(a), the presence and high catalytic activity of ACHE restricts the neurotransmission to classic
synapses or junctional complexes. By contrast, in the volume model of cholinergic
neurotransmission (b), most presynaptic cholinergic terminals in the cortex do not form
junctional complexes and so neurotransmission is mediated by ACh that escapes hydrolysis
because of insufficient or regulated availability and/or activity of ACHE. This ACh reaches
the extracellular space and can stimulate non-junctional nAChRs and mAChRs. As discussed
in the main text, the generation of second-scale cholinergic transients seems to represent a more
important characteristic of cholinergic neurotransmission than either mode of
neurotransmission.
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Table 1
Main characteristics of volume and wired neurotransmission

Volume Wired

Distribution of AChR and release
sites

Non-junctional complex Junctional complex

Transmission specificity Transmission ‘privacy’ is limited to the
specificity of the neurotransmitter and the
selectivity of receptors

Transmission ‘privacy’ is based on the presence
of a transmission channel dedicated to this
neurotransmitter at this synapse

Ratio of pre- to postsynaptic sites One source of neurotransmitter release
affects many targets

One-to-one neurotransmission

Transmission timeline Long transmission delay Minimal transmission delay

Type of coded information Produces widespread, general effects on
‘arousal’, ‘readiness for processing’,
vigilance or somnolence

Inserts discrete and essential information into
target circuits

Mimicking transmission mode Effects of released neurotransmitter can
typically be reproduced by administering
direct agonists at target receptors or drugs
that elevate extracellular levels of the
neurotransmitter (for example, uptake
inhibitors)

As direct receptor agonists or drugs that elevate
extrasynaptic neurotransmitter levels do not
reproduce the phasic pattern of neurotransmission
that typically codes the information transferred to
the target neuron, such drugs typically fail to
reproduce the effects of endogenously released
neurotransmitter

Energy costs Low energy demands; opportunistic
transmission along energy gradients is used
for other purposes

Consumes more space and involves higher energy
costs

AChR, acetylcholine receptor. Table is adapted from Agnati et al.33.
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